TAAFT
Free mode
100% free
Freemium
Free Trial
Deals

Expectation-Maximization Algorithm

[ɪkˌspɛkˈteɪʃən ˌmæksəmaɪˈzeɪʃən ˈælɡəˌrɪðəm]
Machine Learning
Last updated: December 9, 2024

Definition

An iterative method for finding maximum likelihood estimates of parameters in statistical models with unobserved variables.

Detailed Explanation

The EM algorithm alternates between two steps: the Expectation step (E-step) computes the expected value of the log-likelihood function using current parameter estimates, and the Maximization step (M-step) updates parameters to maximize this expected log-likelihood. This process continues until convergence, handling incomplete data scenarios effectively.

Use Cases

Image reconstruction, natural language processing, computer vision, genetic mixture modeling, and clustering applications.

Related Terms